# About weakly uniformly paracompact spaces

Cite as: AIP Conference Proceedings **2483**, 020004 (2022); https://doi.org/10.1063/5.0129289 Published Online: 07 November 2022

B. E. Kanetov, A. M. Baidzhuranova and B. A. Almazbekova





#### **ARTICLES YOU MAY BE INTERESTED IN**

A new topology via a topology

AIP Conference Proceedings 2483, 020003 (2022); https://doi.org/10.1063/5.0115543

G-sequential methods in product spaces

AIP Conference Proceedings 2483, 020007 (2022); https://doi.org/10.1063/5.0115533

Selective versions of acc and (a) spaces and the Alexandroff duplicate
AIP Conference Proceedings 2483, 020006 (2022); https://doi.org/10.1063/5.0115576





## **About Weakly Uniformly Paracompact Spaces**

B.E. Kanetov<sup>1,a)</sup>, A.M. Baidzhuranova<sup>2,b)</sup> and B.A. Almazbekova<sup>1,c)</sup>

<sup>1</sup>Jusup Balasagyn Kyrgyz National University, Bishkek, Kyrgyz Republic <sup>2</sup>International Higher School of Medicine, Bishkek, Kyrgyz Republic

a)Corresponding author:bekbolot\_kanetov@mail.ru
b)anara1403@bk.ru
c)almazbekovabegimai9@gmail.com

**Abstract.** In this work we introduce and study weakly uniformly paracompact spaces. In particular, the characterizations of weakly uniformly paracompact spaces by using Hausdorff compact extensions and  $\omega$ -mapping are obtained. Keywords: Weakly uniformly paracompact, point-finite uniform covering, finitely additive open covering. PACS: 54E15.

#### INTRODUCTION

Throughout this work all uniform spaces are assumed to be Hausdorff, topological spaces Tychonoff and mappings are uniformly continuous.

For coverings  $\alpha$  and  $\beta$  of a set X, the symbol  $\alpha > \beta$  means that the covering  $\alpha$  is a refinement of the covering  $\beta$ , i.e. for any  $A \in \alpha$  there exist  $B \in \beta$  such that  $A \subset B$ . The covering  $\alpha$  is called finitely additive, if  $\alpha^{\angle} = \alpha$ , where  $\alpha^{\angle} = \{ \bigcup \alpha_0 : \alpha_0 \subset \alpha \text{ is finite} \}$ .

A uniformly continuous mapping  $f:(X,U)\to (Y,V)$  of a uniform space (X,U) to a uniform space (Y,V) is called:

- (1) precompact, if for each  $\alpha \in U$  there exist a uniform covering  $\beta \in V$  and a finite uniform covering  $\gamma \in U$ , such that  $f^{-1}\beta \wedge \gamma > \alpha$  [4];
  - (2) uniformly perfect if it is both precompact and perfect [4];

Let  $\omega$  be an open covering of a topological space X to the topological space Y. A mapping f is called an  $\omega$ -mapping if every point  $y \in Y$  has a neighborhood  $O_y$  whose inverse image  $f^{-1}O_y$  is contained in at least one element of the covering  $\omega$  [1].

A covering  $\alpha$  of a topological space X is called point-finite if every point of X lies in only finitely many members of  $\alpha$  [3]. A uniform space (X, U) is called uniformly A-paracompact if every its finitely additive open covering has a locally finite uniform refinement [2].

For the uniformity U, by  $\tau_U$  we denote the topology generated by the uniformity and symbol  $U_X$  means the universal uniformity.

#### WEAKLY UNIFORMLY PARACOMPACT SPACES

Let (X, U) be a uniform space.

**Definition 1** A uniform space (X, U) is called weakly uniformly paracompact if every finitely additive open covering of X has a point-finite uniform refinement.

**Proposition 1** If (X, U) is a weakly uniformly paracompact space, then the topological space  $(X, \tau_U)$  is weakly paracompact. Conversely, if  $(X, \tau)$  is weakly paracompact, then the uniform space  $(X, U_X)$ , where  $U_X$  is the universal uniformity, is weakly uniformly paracompact.

**Proof.** Let  $\alpha$  be an arbitrary open covering of the space  $(X, \tau_U)$ . Then, for a finitely additive open covering  $\alpha^{\perp}$  of the uniform space (X, U) there exists a point-finite uniform covering  $\beta \in U$  which is a refinement of it. It is known that the interior  $\langle \beta \rangle = \{\langle \beta \rangle : B \in \beta\}$  of the uniform covering  $\beta$  is a uniform covering, where  $\langle B \rangle$  is the interior of the set B. Let  $\gamma = \langle \beta \rangle$ . It is clear that  $\gamma$  is a point-finite open uniform covering of (X, U). For each  $\Gamma \in \gamma$  choose  $A_{\Gamma} \in \alpha_{\aleph_0}$  such that  $\Gamma \subset A_{\Gamma}$ , where  $A_{\Gamma} = \bigcup_{i=1}^n A_i$ ,  $A_i \in \alpha$ , i = 1, 2, ..., n. Let  $\alpha_0 = \bigcup_{i=1}^n \{\alpha_{\Gamma} : \Gamma \in \gamma\}$ ,  $\alpha_{\Gamma} = \{\Gamma \cap A_i : i = 1, 2, ..., n\}$ . Then  $\alpha_0$  is a point-finite open covering of the space  $(X, \tau_U)$ , and it is a refinement of  $\alpha$ . So, the space  $(X, \tau_U)$  is weakly paracompact.

Conversely, let the Tychonoff space  $(X, \tau)$  be weakly paracompact. Then the set of all open coverings forms the base of the universal uniformity  $U_X$  of the space  $(X, \tau)$ . It is easy to see that the uniform space  $(X, U_X)$  is weakly uniformly paracompact.

The Japanese mathematician G. Tamano gave a remarkable characterization of paracompact spaces in terms of compact extensions.

The following theorem gives a characterization of weak uniform paracompactness in the spirit of Tamano.

**Theorem 1** Let (X, U) be a uniform space and bX be a certain its compact Hausdorff extension. The uniform space (X, U) is weakly uniformly paracompact if and only if for each compactum  $K \subset bX \setminus X$  there exists a point-finite uniform covering  $\alpha \in U$  such that  $[A]_{bX} \cap K = \emptyset$  for all  $A \in \alpha$ .

**Proof.** Necessity. Let (X, U) be weakly uniformly paracompact and  $K \subset bX \setminus X$  be an arbitrary compactum. Then for each point  $x \in X$  there is an open neighborhood  $O_x$  in bX such that  $[O_x]_{bX} \cap K = \emptyset$ . It is clear that  $\gamma = \{O_x \cap X : x \in X\}$  is an open covering of the uniform space (X, U). We form an open covering  $\gamma^{\angle}$  of the (X, U), taking as elements of  $\gamma$ . Then  $\gamma^{\angle}$  is a finitely additive open covering of the space (X, U). According to the condition of the theorem, it is possible to refine a covering  $\gamma^{\angle}$  by a point-finite uniform covering  $\beta \in U$ . Then  $[B]_{bX} \subset [\bigcup_{i=1}^n (O_{x_i} \cap X)]_{bX} \subset \bigcup_{i=1}^n [O_{x_i}]_{bX}$ . As  $[O_{x_i}]_{bX} \cap K = \emptyset$  for any i = 1, 2, ..., n, then  $[B]_{bX} \cap K = \emptyset$  for any i = 1, 2, ..., n, then

Sufficiency. Let  $\alpha$  be an arbitrary finitely additive open covering of a space (X, U). Then there is an open family  $\beta$  in bX such that  $\beta \land \{X\} = \alpha$ . Let  $K = bX \setminus \bigcup \beta$ . It follows that K is compactum. Then, by the condition of the theorem, there exists a point-finite uniform covering  $\gamma \in U$  such that  $[\Gamma]_{bX} \cap K = \emptyset$  for any  $\Gamma \in \gamma$ . Since  $[\Gamma]_{bX}$  is compactum in bX there are  $B_1, B_2, ..., B_n \in \beta$  such that  $[\Gamma]_{bX} \subset \bigcup_{i=1}^n B_i$ . Then  $\Gamma \subset \bigcup_{i=1}^n A_i$ , where  $\bigcup_{i=1}^n A_i \in \alpha$ . Consequently, (X, U) is a weakly uniformly paracompact space.

**Definition 2** A uniform space (X, U) is called uniformly B-locally compact, if there exists a point-finite uniform covering consisting of compact subsets.

The next theorem gives a connection between weak uniform paracompactness and uniform B-locally compactness.

**Theorem 2** Any uniformly B-locally compact space is weakly uniformly paracompact.

**Proof.** Let  $\alpha$  be an arbitrary finitely additive open covering of the space (X, U). Then there exists a point-finite uniform covering  $\beta$  consisting of compact subsets. It is easy to see that the covering  $\beta$  is a refinement of  $\alpha$ . Consequently, the space (X, U) is weakly uniformly paracompact.

The next two propositions show that weak uniform paracompactness is preserved when passing to a closed subspaces and any disjoint sum of uniform spaces.

**Proposition 2** Any closed subspace M of a weakly uniformly paracompact space (X, U) is weakly uniformly paracompact.

**Proof.** Let  $\gamma$  be a finitely additive open covering of M. Let  $\hat{\gamma}$  denote the open covering of the space (X, U), consists of all elements of the covering  $\gamma$  and the set  $X \setminus M$ . It is clear that  $\hat{\gamma}$  is a finitely additive covering. According to the condition there exists a point-finite uniform covering  $\beta \in U$  which is a refinement of  $\hat{\gamma}$ . Let  $\beta_M$  be the trace of  $\beta$  on M. It is easy to see that  $\beta_M$  is a uniform covering of the subspace M and is a refinement of  $\gamma$ .  $\beta_M$  is a point-finite covering. Indeed, let  $x \in M$  be an arbitrary point. Since  $\beta$  is a point-finite uniform covering, then  $x \in M \subset X$  belongs to only finitely many elements of the covering  $\beta$ . Then  $x \in M$  belongs to only finitely many elements of the covering  $\gamma$  of the subspace M, it was possible to inscribe a point-finite uniform covering of  $\beta_M$ . Therefore, the subspace M is weakly uniformly paracompact.

**Proposition 3** The sum of any family of weakly uniformly paracompact spaces is weakly uniformly paracompact.

**Proof.** Let  $\{(X_a, U_a): a \in M\}$  be an arbitrary family of weakly uniformly paracompact spaces  $(X_a, U_a)$  and  $(\coprod_{a \in M} X_a, \coprod_{a \in M} U_a)$  be the sum of uniform spaces. Consider an arbitrary finitely additive open covering  $\alpha$  of the space  $(\coprod_{a \in M} X_a, \coprod_{a \in M} U_a)$ . It is easy to see that the family  $\beta = \{X_a \cap A : a \in M, A \in \alpha\}$  is again a finitely additive open covering of the space  $(\coprod_{a \in M} X_a, \coprod_{a \in M} U_a)$  and is a refinement of  $\alpha$ . For each  $a_0 \in M$ , put  $\beta_{a_0} = \{X_{a_0} \cap A : a_0 \in M, A \in \alpha\}$ . It is clear that it is a finitely additive open covering of the space  $(X_{a_0}, U_{a_0})$ , and therefore, there exists a point-finite uniform covering  $\gamma_{a_0} \in U_{a_0}$  which is a refinement of  $\beta_{a_0}$ . Next, consider the family  $\gamma$  which is the union of all families  $\gamma_a$ ,  $\alpha \in M$ . Then the family  $\gamma$  is a uniform covering of the space  $(\coprod_{a \in M} X_a, \coprod_{a \in M} U_a)$  and it is a refinement of  $\alpha$ . We show that  $\gamma$  is point-finite. Let  $\alpha \in X$  be an arbitrary point. Let  $\alpha \in X$  and  $\alpha \in M$ . Since  $\alpha \in X$  is a point-finite uniform covering of the space  $\alpha \in X$  belongs to only finitely many elements of  $\alpha \in X$ . Since the spaces  $\alpha \in X$  belongs to at most finitel many elements of the covering  $\alpha \in X$ .

The following theorem shows that strong uniform paracompactness is preserved in the preimage direction by uniformly perfect mappings.

**Theorem 3** Weak uniform paracompactness is preserved in the preimage direction by uniformly perfect mappings.

**Proof.** Let  $f:(X,U) \to (Y,V)$  be a uniformly continuous mapping from a uniform space (X,U) to a weakly uniformly paracompact space (Y,V). Let  $\alpha$  be an arbitrary finitely additive open covering of (X,U). It is clear that the covering  $\{f^{-1}y:y\in Y\}$  refines the covering  $\alpha$ . Then  $\beta=f^{\#}\alpha=\{f^{\#}A:A\in\alpha\}$ , where  $f^{\#}A=Y\setminus f(X\setminus A)$ , is an open covering of the space (Y,V). Considering all possible finite unions of sets of  $\beta$ , we construct an open covering  $\beta^{\angle}$ . It is a finitely additive open covering. By the condition of the theorem, there is a point-finite uniform covering  $\gamma\in V$  of it. It is easy to see that the covering  $f^{-1}\beta^{\angle}$  is a refinement of the covering  $\alpha$ . The  $f^{-1}\gamma$  is a point-finite uniform covering of the space (X,U), and it is a refinement of  $\alpha$ . So, the uniform space (X,U) is weakly uniformly paracompact.

The following theorem is a uniform analogue of Dowker-Ponomarev-Fedorcuk-Shediva's (Trnkova) theorem for weakly uniformly paracompact spaces.

**Theorem 4** A uniform space (X, U) is weakly uniformly paracompact if and only if for every finitely additive open covering  $\omega$  of (X, U) there exists a uniformly continuous  $\omega$ -mapping  $f: (X, U) \to (Y, V)$  of (X, U) onto a metrizable weakly uniformly paracompact space (Y, V).

**Proof.** Necessity Let (X, U) be a metrizable weakly uniformly paracompact space and  $\omega$  be an arbitrary finitely additive open covering of X. Then the identity map of the space (X, U) is the required uniformly continuous  $\omega$ -mapping of (X, U) onto a metrizable weakly uniformly paracompact space.

Sufficiency Let  $\omega$  be an arbitrary finitely additive open covering of the space (X, U). Then there exists a uniformly  $\omega$ -continuous mapping  $f:(X,U)\to (Y,V)$  of (X,U) onto some metrizable weakly uniformly paracompact space (Y,V). For each point  $y\in Y$ , there exists a neighborhood  $O_y$  whose preimage  $f^{-1}O_y$  is contained in some element of the covering  $\omega$ . Let  $\beta=\{O_y:y\in Y\}$ . We form an open covering  $\beta^{\angle}$  consisting of all possible finite unions of elements of  $\beta$ . Let  $\gamma\in V$  be a point-finite uniform covering that refines  $\beta^{\angle}$ . Then the covering  $f^{-1}\gamma$  is a refinement of the covering  $\omega$  of (X,U). We show that  $f^{-1}(\gamma)$  is a point-finite uniformly covering. Indeed, let  $x\in X$  be an arbitrary point in X and y=f(x). Then the point  $y\in Y$  belongs to a finite number of elements of the covering  $\gamma$ . It is easy to see that the point  $\gamma$  is weakly uniformly paracompact.

**Theorem 5** Any uniformly perfect mapping  $f:(X,U) \to (Y,V)$  of a uniform space (X,U) onto a uniform space (Y,V) is an  $\omega$ -mapping for any finitely additive open covering  $\omega$  of (X,U).

**Proof.** Let  $\omega$  be an arbitrary finitely additive open covering of the space (X, U). It is easy to see that the covering  $\alpha = \{f^{-1}y : y \in Y\}$  is a refinement of  $\omega$ . For each  $f^{-1}y \in \alpha$ , choose a  $W_y \in \omega$  such that  $f^{-1}y \in W_y$ . Then from the closedness of the mapping f there exists a neighborhood  $O_y \setminus \{y\}$  such that  $f^{-1}O_y \subset W_y$ .

**Proposition 4** The product of a weakly uniformly paracompact uniform space (X, U) and a compact uniform space (Y, V) is weakly uniformly paracompact.

**Proof.** Let (X, U) be a weakly uniformly paracompact space and (Y, V) be a compact uniform space. It is known [see 4, p. 77, Example 1.7.2] that the projection  $\pi_X : (X, U) \times (Y, V) \to (X, U)$  is uniformly perfect. Then it is an  $\omega$ -mapping of the product  $(X, U) \times (Y, V)$  onto a weakly uniformly paracompact space (Y, V) for any finitely additive open covering  $\omega$  of  $(X, U) \times (Y, V)$ . Therefore, according to Theorem 4, the uniform space  $(X, U) \times (Y, V)$  is weakly uniformly paracompact.

Any uniformly *A*-paracompact space is weakly uniformly paracompact. The converse need not be true. The following theorem is an intrinsic characterization of strongly uniformly paracompact spaces.

**Theorem 6** For a uniform space (X, U) the following are equivalent:

- 1. (X, U) is uniformly A-paracompact;
- 2. (X, U) is weakly uniformly paracompact and the topological space  $(X, \tau_U)$  is paracompact.

**Proof.** 1)  $\Rightarrow$  2) It is obviously.

2)  $\Rightarrow$  1). Let  $\alpha$  be an arbitrary finitely additive open covering of the uniform space (X, U). There is a locally finite open covering  $\beta$  which is a refinement of  $\alpha$ . We form the covering  $\beta^{\angle}$  consisting of all possible finite unions of elements of  $\beta$ . Then  $\beta^{\angle}$  is a finitely additive open locally finite covering. Next, there is a point-finite refinement  $\gamma inU$  of  $\beta^{\angle}$ . Therefore, a locally finite uniform covering  $\beta^{\angle}$  is a refinement of the finite additive open covering  $\alpha$ . Thus, the uniform space (X, U) is uniformly A-paracompact.

### **REFERENCES**

- [1] P.S. Aleksandrov, *Introduction to the Theory of Sets and General Topology* (Nauka, Moscow, 1977; in Russian).
- [2] L.V. Aparina, Uniformly Lindelöf Space, Trudy Mosk. Math. Obshestva **57**, 3–15 (1996) (in Russian).
- [3] A.V. Arkhangel'sky, V.I. Ponomarev, Foundation of General Topology in Problems and Exercises (Nauka, Moscow, 1974; in Russian).
- [4] A.A. Borubaev, P.S. Pankov, and A.A. Chekeev, *Spaces Uniformed by Coverings* (Budapest, 2003).